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The inelastic light scattering of the acoustic vibration of spherical nanoparticles has been studied within a
continuum approximation, extending the previous models, valid for small particles, to the case of particle sizes
comparable with the wavelength of the light. A mechanism appears, i.e. the polarizability modulation related to
density changes, which is typical of Brillouin scattering and is negligible for small particles. Furthermore, the
contribution of the polarizability modulation induced by the relative displacements of atoms, which produces
the Raman scattering in small particles, strongly changes. Spheroidal modes other than the l=0 and l=2 ones,
the only Raman active in small particles, contribute to both scattering mechanisms. As the size increases,
higher l modes with higher n, the index that labels the radial wave vector, become important. In relatively large
particles, the active �n , l ,m� spheroidal modes are those with frequency close to that of the Brillouin active
vibrations in the bulk material, i.e., �nl�qvL, where q is the exchanged wave vector of the light and vL is the
longitudinal sound velocity. Also torsional modes become active and produce depolarized light scattering with
properties similar to those of transverse acoustic phonons.
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I. INTRODUCTION

The acoustic vibrational dynamics of spheroidal clusters
was studied by Lamb, who found the vibrational modes of a
free homogeneous sphere.1 The modes are classified as tor-
sional and spheroidal ones, both labeled by three indices
�nlm�, which describe the angular �lm� and radial �n� depen-
dence of the displacement. On the basis of symmetry argu-
ments, Duval showed that only the symmetric �l=0� and
quadrupolar �l=2� spheroidal modes are Raman active.2 This
selection rule was confirmed by calculations of the strain
components associated with the acoustic vibrations and by
the analysis of their symmetry.3,4 The l=0 modes give a po-
larized �vertical-vertical �VV� parallel polarization in excita-
tion and detection� Raman spectrum, whereas the l=2 modes
give depolarized spectra, allowing one to distinguish the na-
ture of the vibrations by a comparison of the VV and
horizontal-vertical �HV� �crossed polarizations� polarized
spectra. There are no general rules that indicate either the
relative intensity of the symmetric and quadrupolar Raman
peaks, appearing in the VV spectrum, or the depolarization
ratio DR2= IHV / IVV for the quadrupolar modes. These two
quantities depend on the microscopic structure and on the
physical mechanism of the phonon-photon interaction, which
produces the polarizability modulation. These mechanisms
are quite different for semiconductor, metal, and dielectric
particles.4–6 A lot of experimental data were well reproduced
by assigning the observed low frequency peaks only to
the symmetric �l=0� and quadrupolar �l=2� spheroidal
vibrations.7–15 The first modes �n=1� of the sequences were
usually observed, but weaker peaks, attributed to modes with
n�1, were also observed in some systems.10,12–14 Their in-
tensities were well reproduced by calculations based on a
strain model.3

However, all of the above cited experiments were per-
formed on systems formed by very small particles of size
D�� or qD�1, where � is the wavelength and q is the

exchanged wave vector of light. In fact, the theoretical re-
sults were derived in the hypothesis that the fields, scattered
by different polarizable units within the particle, are all in
phase, qD�1.

Recently, light scattering experiments from particles with
sizes of hundreds of nanometers have been performed.16–19

The particles were made up of sol-gel derived silica, poly-
styrene or polymethyl methacrylate, aggregated to form three
dimensional photonic crystals. The low frequency spectra of
these systems, and those relative to a single particle,20 ex-
hibit many peaks with comparable intensities. The peaks
were attributed to the spheroidal �n , l� acoustic vibrations
confined in a single sphere. Modes with l=0,2 ,4 ,6 were
observed. The assignments were based on a best fit of the
frequencies calculated by the Lamb model, to the observed
ones. In these fits, the sound velocities were used as free
parameters. Up to 21 vibrational modes, with also high val-
ues of both n and l, were observed for polystyrene spheres.19

No selection rule for n and l was considered based on the
idea that for qD�1, all the theoretical results need a revi-
sion. Unfortunately, the strong Mie scattering of the light that
occurs for ��D prevents the measurement of polarized
spectra because the polarization is lost in a multiple scatter-
ing process. Furthermore, multiple scattering strongly re-
duces the information on the q dependence of the spectra. In
fact, measurements performed in a backscattering configura-
tion contain contributions from all exchanged wave vectors
�0�q�4�nr /�0, where nr is the refractive index and �0
is the wavelength of the light in vacuum�. Polarized
q-dependent spectra were taken by immersing the particles in
a liquid with a matched refractive index.17 The strong depo-
larized scattering due to the relaxation of the liquid, the in-
teraction between localized modes of the particles and the
phonons of the liquid, which produces line broadening, as
well as the interaction among the particles gave interesting
physical results, but not a direct information on the single
particle spectra.
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Some assignments, as those of Table I in Ref. 19 only
based on the calculated frequencies of the modes, could be
not correct, especially for high frequency modes, which be-
come much denser as the angular l and radial n indices in-
crease. It is evident that a theoretical analysis of the expected
Raman activity of the different modes would strongly help.
The aim of the present work is therefore to study how the
selection rules, valid for small particles �qD�1�, evolve as
qD increases.

II. BRILLOUIN AND RAMAN SCATTERING

A method for calculating the low frequency Raman spec-
trum of dielectric nanoparticles has been developed in Refs.
3 and 6.

The spectral density of the scattered light is given by21

I	
�q,�� �� dte−i�t��	

* �q,0��	
�q,t�	 , �1�

where 	 and 
 are the direction of polarization of the inci-
dent and scattered photons, respectively, and ��=��i−��s
and q=ki−ks are the exchanged energy and wave vector,
respectively. The fluctuations of the dielectric constant can
be described in terms of the space Fourier transform of the
macroscopic polarizability density tensor P	
�r , t�,

�	
�q,t� �� dre−iq·r�t�P	
�r,t� = 

i

e−iq·ri�t��	

i �t� , �2�

which in atomic or molecular systems can be described mi-
croscopically by using the effective microscopic polarizabil-
ity tensor �	


i �t� of the ith scatterer at position ri�t�,

ri�t� = xi + ui�t� , �3�

where ui�t� is the displacement from the equilibrium position
xi.

�	

i �t� can be expanded in power series of the displace-

ments u j, and ui can be expressed in terms of the vibrational
eigenvectors e�i , p�, whose frequencies are �p,

�	

i �t� = �	


i + Q	

i , �4�

with

Q	

i = 


j


�

��	

i

�u�
j �e��j,p� − e��i,p�� . �5�

�	

i is the bare polarizability of the ith unit, and its deriva-

tives with respect to the displacements of the surrounding
atoms are calculated at the equilibrium position xi.

The contribution of the pth mode, with frequency �p, to
the Stokes part of the spectrum can be put in the form22

I	

p �q� �

n��p� + 1

�p �

i

e−iq·xi
�− iq · e�i,p��	


i + Q	

i ��2

=
n��p� + 1

�p C	
��p� , �6�

where n�� ,T� is the Bose-Einstein factor and C	
��p� is the
mode-radiation coupling coefficient.

The first term, −i
i�	

i e−iq·xi

q ·e�i , p�, describes the polar-
ization fluctuations due to the displacement of the units from
their equilibrium position: The density of microscopic polar-
ization units, atoms, ions, and bonds is modulated by the
acoustic vibrations. Inelastic neutron scattering and, usually,
most of the polarized Brillouin scatterings are due to these
density fluctuations caused by longitudinal acoustic phonons.
In the following, we will refer to it as the Brillouin term.

The second term, 
ie
−iq·xi

Q	

i , is due to two kinds of in-

duced effects: �i� The local field changes due to the motion of
the surrounding dipoles �dipole induced dipoles �DID��. �ii�
The electronic polarizability changes with the change of the
atomic distances �bond polarization �BP��. The induced ef-
fects contribute to the polarized Brillouin peak due to longi-
tudinal phonons and cause the depolarized Brillouin peak
due to transversal phonons and the disorder induced low fre-
quency Raman scattering in glasses or disordered crystals. In
the following, we will refer to this term as the Raman term.

The Brillouin term was not considered in Ref. 3. In fact, if
the particle size D is much smaller than the wavelength of
the exciting light, the mechanism of scattering due to density
fluctuations is not active. For spherical particles �D=2R�, we
will find a �qR�4 dependence of the Brillouin intensity, for
small qR values. Therefore, only the Raman term is active
for small particles �qR�1�. All polarization units are excited
in phase, and the particle behaves as a molecule, which can
be described by an effective polarizability and by its deriva-
tives with respect to the coordinates of the normal modes.
The important difference with the Brillouin scattering is that
no q dependence is present, so that isotropic scattering is
observed instead of the Bragg-like scattering, typical of sys-
tems that extend over many wavelengths.

For particles with a size comparable to the wavelength of
the light, both the Brillouin and Raman terms will be impor-
tant. We will treat the two contributions separately, but note
that the two terms interfere: The intensity at a given fre-
quency and q is proportional to the square of the sum of the
field amplitudes given by the two mechanisms, as Eq. �6�
clearly shows.

III. BRILLOUIN SCATTERING FROM
THE SPHEROIDAL MODES

In a continuum approximation, we can use the equilib-
rium macroscopic polarizability density tensor P	
�x� in-
stead of �	


i and transform the sum into a space integral.
Furthermore, if the material is homogeneous and isotropic,
we will have

P	
�x� = P�	
, �7�

where P is the macroscopic polarizability density. This indi-
cates that the Brillouin term due to the density fluctuations
produces only polarized scattering from the acoustic vibra-
tion of the nanoparticles, as the corresponding term does for
the usual case of phonons.

The amplitude of the Brillouin scattered field by the pth
mode will be
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B		
B �p,q� = C		

B �p,q�1/2 = − iqP�
V

e−iqzez
p�x�dx , �8�

having chosen the z axis along q.
We will discuss in detail the simple case of the symmetric

spheroidal modes. The radial displacement, e�r�, of the l=0
modes is obtained from the symmetric potential:

�0�h,r� = A�h�h
sin hr

hr
, �9�

e0�h,r� =
A�h�h2

hr
�cos hr −

sin hr

hr
 , �10�

where h is the radial wave vector and the amplitude A�h� is
determined by normalization and boundary conditions. For a
free particle, a discrete set of wave vectors hn and relative
frequencies �n0=hnvL is obtained for stress-free boundary
conditions at the sphere surface. For particles embedded in a
matrix, the displacement extends into the external material
and the discrete set of modes become a continuum. A�h� is
obtained by normalization and continuity of the displacement
and stress at the particle surface.

By inserting the l=0 displacement of Eq. �10� in Eq. �8�,
we obtain

B		
B �0,h,q� = P4�h� h

h2 − q2 cos qR sin hR

+
q

q2 − h2 cos hR sin qR −
1

qhR
sin hR sin qR� .

�11�

The inelastic light scattering intensity, obtained by Eq. �6�
with the above scattering amplitude, B		

B �0,h ,q�, is shown in
Fig. 1 as a function of the adimensional radial wave vector
hR for some qR values. The calculation is relative to a sys-
tem with vL /vT=2. For numerical and graphical practical

reasons, instead of a free particle, a quasi-free sphere in a
soft medium has been considered. The sound velocities and
the density of the medium were 1 /4 of those of the particle.
The spectrum calculated for qR=4 shows an intense n=1
peak at hR=2.8, with a weaker n=2 peak at hR=6.1, the
intensity of the higher n modes being negligible. For qR=6,
an intense n=2 peak dominates the spectrum. For qR=8, the
n=1,2 ,3 peaks have comparable intensities. The results of
these three examples are extended in Fig. 2, which shows the
intensities of the six lowest frequency peaks of the l=0 se-
quence, as a function of qR. Spectra as those of Fig. 1 were
calculated for many q values in the range 0�qR�20. The
intensities of the �n ,0� modes were obtained by calculating
the areas of the peaks, which are centered at frequencies
more or less independent of q, as Fig 1 shows. Resonances
appear at h=q. Besides the presence of the �q−h� denomi-
nator, the resonances are broad, with a width in hR of the

order of �, since the term
sin�q−h�R

�q−h�R appears in Eq. �11� for

h�q. For qR�1, only the n=1 mode appears to be active
with an intensity that initially grows as q4 and reaches a
maximum at qR�3.5, to be compared with the wave vector
of the n=1 mode, h1R=2.8. For a backscattering geometry,
for ��514.5 nm, and for nr�1.5, this corresponds to par-
ticles with a size 2R= �h1R�� /2�nr�150 nm. Only the sec-
ond mode is expected for a particle size of about 300 nm,
only the third mode for a size of about 450 nm, and so on.
Only one or two peaks dominate the spectrum at any q value,
those with h values near to q �see also Fig. 1�, but the l=0
mode periodically appears important even for high qR val-
ues.

This detailed study for the symmetric mode cannot be
easily extended to the l�0 vibrations. Instead, two different
approaches will be used. The first approach considers, for
any q value, the angular symmetry of the scattered field,
e−iqzez

p�x�: Only terms transforming as Y00 can possibly con-
tribute to the angular part of the integral in Eq. �8�, which
gives the total scattered field. The angular dependence of the
displacement field of the spheroidal modes, e	

nlm, is given
by23
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FIG. 1. �Color online� Contribution of the Brillouin term to the
spectra from the symmetric spheroidal vibrations, for qR=4 �open
triangles�, qR=6 �open circles�, and qR=8 �solid line, multiplied by
a factor of 5�.
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FIG. 2. �Color online� q dependence of the intensities given by
the Brillouin term for the first six modes in the sequence of the
symmetric spheroidal vibrations.
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e	
nlm = A�r�x	Ylm��,�� + B�r�

�rlYlm��,��
�x	

, �12�

where A�r� and B�r� are radial functions typical of each
mode with frequency �nl. The first term in the sum trans-
forms as Yl+1,m�, the second, not present for l=0, as Yl−1,m�.

The exponential can be expanded as

e−iqz = 

s

1

s!
�− iqr cos ��s = 


l�

al��qr�Pl��cos �� , �13�

where the angular dependence has been evidenced by intro-
ducing the Legendre polynomials. Note that there is no direct
correspondence between terms with s= l� in the two sums
since Pl��cos �� contains terms in �cos ��l� , �cos ��l�−2 , . . ..

However, the �qr cos ��l� term of the development of the
exponential is needed for having an al��0. By combining
the symmetry properties of the quantities in Eqs. �12� and
�13�, we find the selection rule l�= l�1. Therefore, for low
qR, only modes with low l values will be active and, as qR
increases, vibrations with much higher l modes will become
active.

The second approach considers the evolution of Brillouin
spectrum starting from a large sphere and progressively de-
creasing its size. In a macroscopic sphere, Brillouin scatter-
ing will be produced by longitudinal acoustical phonons at
frequencies given by �=qvL; by decreasing the size, the dis-
crete sequences �n , l� will appear.24 However, the description
of the acoustic vibrations in terms of longitudinal plane
waves, eq, or waves of the sphere, eplm, must be equivalent.
This is true for large particles and for high vibrational fre-
quencies when the modes are very dense, so that the fre-
quency difference between pairs of successive vibrational
modes of the sphere is smaller than the homogeneous line-
width due to anharmonicity or to the interaction of the sphere
with a surrounding matrix. An �n , l ,m� mode can be de-
scribed as the superposition of acoustic phonons and vice
versa. The amplitudes of the terms in the developments will
be proportional to �Ve−ik·rep�x�dx. This is the same quantity
that appears in the amplitude of the scattered Brillouin field
of Eq. �8�, but now the phonon wave vector k appears in-
stead of the exchanged wave vector q. Therefore, only
�n , l ,m� modes with frequencies close to qvL will contribute
to the Brillouin spectrum. A possible picture is that the pho-
ton is inelastically scattered by the dynamical Bragg grating
associated with the mode of the sphere. Both radial and an-
gular oscillations produce the grating, whose pitch decreases
as n and l increase. The maximum scattering efficiency will
occur for the best matching between the photon wavelength
�in fact, the relevant quantity is q� and the pitch of this
spherical grating. This occurs when the �n , l ,m� vibration has
a frequency close to qvL. The efficiency of the grating is
smaller than that of the grating produced by the plane wave
of a phonon, and broader q resonances, like those shown in
Fig. 2, will appear. This result, obtained for large particles
�qR�1�, should be valid also for medium-sized particles
�qR�1�. Figure 2, relative to the l=0 modes, confirms this

conjecture: The resonance at h=q selects modes with fre-
quencies �n0=hnvL close to qvL.

IV. RAMAN SCATTERING FROM SPHEROIDAL MODES

The scattering amplitude of the pth mode, due to the in-
duced term Q	
, is given by

B	

R �p,q� = 


��



i

A	
���xi�
�e��xi,p�

�x�

exp�− iq · xi� ,

�14�

where the
�e��xi,p�

�x�
are related to the strain components at xi

produced by the normal mode e�i , p�. The A	
�� coefficients
are local quantities to be calculated at the equilibrium posi-
tion of the ith unit and do not depend on the vibrations.
Equation �14� has been modified by the addition of the term
exp�−iq ·xi�, not present in Refs. 3 and 6.

For crystalline particles, by neglecting the size depen-
dence of the A	
��, i.e., by neglecting surface effects and by
converting the sum on the point scatterers into an integral on
the volume of the sphere in a continuum description of the
vibrational modes, we obtain

B	

R �p,q� = N


k��

A	
��
k � �e��x,p�

�x�

exp�− iq · xi�dx ,

�15�

where N is the number of unitary cells in the crystalline
sphere and the sum over k runs over the atoms �ions� in the
unit cell. In amorphous particles, instead of a sum on the
atoms, averaged A	
�� will be needed. For depolarized scat-
tering, the quantity A	
	
 �	�
� is proportional to the p44

elasto-optical constant. On the contrary, p11 and p12 used to
determine the intensities of the longitudinal peak of Brillouin
scattering, in addition to the contribution from the A				 and
A		

, have a main contribution from the Brillouin term dis-
cussed in the previous section.

In this way, the problem of calculating the Raman inten-
sities is reduced to the calculation of the dynamical quanti-
ties,

E���q� =� ����x,p�exp�− iq · x�dx , �16�

where ����x , p�= 1
2
� �e��x,p�

�x�
+

�e��x,p�

�x�
� are the strain compo-

nents produced by the pth vibrational mode.
The first question to answer is the q dependence of the

Raman intensity of the modes in an n sequence for defined l.
The l=0 sequence of symmetric modes will be studied in
detail since an analytical solution exists in this simple case.

The spatial derivatives of the displacement are

�e�

�x�

= F���r� + G�r�x�x�, �17�

with
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F���r� =
Ah3

�hr�2�cos hr −
sin hr

hr
��� �18�

and

G�r� =
Ah5

�hr�5 �− 3hr cos hr + 3 sin hr − �hr�2 sin hr� .

�19�

The dynamical quantities E���q� are obtained by the vol-
ume integration, in spherical coordinates, of Eq. �16�. By
taking the z axis along q, the interesting quantities are
Exx�q�=Eyy�q� and Ezz�q�, with E���q�=0 for ���, as
shown by Eqs. �17�–�19�, because integrals of odd functions
appear in this case. This shows that the Raman scattering
from the symmetric modes remains polarized even at q�0.
The following results have been obtained:

Exx�q,h� = E		�0,h�
3� sin qR

qR
− cos qR

�qR�2 , �20�

where

E		�0,h� =
4

3
�A�h�hR�cos hR −

sin hR

hR
 = E0 �21�

is the q=0 strain integral.3 The factor Exx�q ,h� /E0, shown in
Fig. 3, does not depend on the radial wave vector h so that
the relative intensity of all modes of the sequence remains
the same.

More interesting is the result of the calculation of
Ezz�q ,h�, whose expression, quite long, is not reported. Its h
dependence changes with q, as shown in Fig. 4. For q=0, the
�modulus of the� strain integral is more or less the same for
all the n values. This is due to an effect of compensation
between the linear increase of the local strain with the radial
wave vector and the increase of the destructive interference
among regions having a local strain of opposite sign. In fact,
the displacement field of the nth mode has n−1 radial nodes
and the corresponding radial strain n nodes. The observed
intensity decrease, as n increases, is therefore almost com-
pletely due to the thermal averages involving phonon popu-

lations and 1-phonon transition rates, not to differences in the
phonon-photon coupling coefficients, C		

0,n. The shape of the
Raman spectrum is obtained by squaring the strain integral
and dividing by the square of the frequency since ��n���
+1� /���1 /�2 for kT���. This is true only for q=0 be-
cause Exx�0,h�=Eyy�0,h�=Ezz�0,h�, as it will be clearer in
the following. As qR increases, the scattering amplitude of
the lowest frequency mode �n=1� decreases and modes with
n�1 become dominant. In the example of Fig. 4, the n=2
mode is dominant at qR=6, and the n=4 at qR=12. The
scale of Ezz is arbitrary but the same for the different qR
values. Modes with different n values reach a maximum Ra-
man activity at different qR values, but the scattered fields
have comparable amplitudes at the maximum. This is clearer
in Fig. 5, which shows the square of the zz strain integrals of
Eq. �16�, integrated on the frequency ranges covered by the
first five l=0 modes. Broad resonances at q=hn appear, simi-
lar to those already observed for the Brillouin scattering
mechanism of the previous section.
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In order to obtain the Raman spectrum from the knowl-
edge of the E		 strain integrals, we need to define the geom-
etry of the experiment and to know the microscopic mecha-
nisms that modulate the polarizability. For example, in the
backscattering configuration that is used in most Brillouin
scattering experiments, the incoming and scattered light are
both parallel to q �along ẑ�, and taking x̂ parallel to the
polarization axis, we obtain

Bxx
R = AxxxxExx + AxxyyEyy + AxxzzEzz. �22�

The E		 quantities have been calculated above as a func-
tion of the frequency and of the wave vector, but the A		



quantities, which measure the fluctuations of the polarizabil-
ity induced by the vibrational mode, are also needed. In Ref.
6, it has been shown that in dielectric materials we can con-
sider the DID and/or BP scattering mechanisms. For DID,
the relation Axxxx=−2Axxyy =−2Axxzz holds; for BP, the rela-
tion is Axxxx=Axxyy =Axxzz. The different dependence of Exx
=Eyy and Ezz on frequency and exchanged wave vector,
makes the shape of the Raman spectrum dependent on the
scattering mechanism. Furthermore, the intensity of the scat-
tered light is not the sum of the intensities given by the
Brillouin and Raman terms. The two terms interfere and the
coupling coefficient of the pth mode, in general, will be
given by

C		�p,q� = �B		
B �p,q� + B		

R �p,q��2. �23�

A qualitative discussion of the effect of qR�0 on the l
�0 spheroidal modes can follow the two approaches used
for Brillouin scattering. Instead of the symmetry of the dis-
placement field, for Raman scattering we must consider the
symmetry of the strain components. Taking the derivative of
Eq. �12�, we obtain

�e	
nlm

�x


= �A��r�x	x
 + B��r��	,
�rlYlm��,��

+ C��r�x


�rlYlm��,��
�x	

+ D��r�x	

�rlYlm��,��
�x


+ E��r�
�rlYlm��,��

�x	�x


, �24�

where A� ,B� ,C� , . . .. are radial functions typical of each
mode with frequency �nl. The terms in the sum transform as
Ylm� or Yl−2,m� or Yl+2,m�. Therefore, for q=0, only the l=0
and l=2 spheroidal modes can contribute to Raman scatter-
ing. The same arguments used in the section of the Brillouin
scattering indicate that, as q increases, modes with progres-
sively higher l symmetry will become Raman active.

As for the second approach, we observe that in a macro-
scopic sample, the induced �Raman� terms produce the de-
polarized transverse peak at the frequency �T=qvT and also
contribute to the polarized longitudinal peak at the frequency
�L=qvL. Therefore, two sets of acoustic modes of a macro-
scopic sphere are active, whereas in the Brillouin term only
the modes resonant with the longitudinal phonons were ac-
tive. The discussion and the conjectures proposed for the

case of the Brillouin term can be extended to the present
case. In fact, the dynamical grating of the strain and that of
the displacement field are closely related.

Saviot and Murray showed that the spheroidal modes can
be grouped into two categories: primarily longitudinal and
primarily transverse.25 They also showed that modes of both
natures are present in a sequence �n , l� with fixed l�0,
whereas for l=0, all modes have a dominant longitudinal
character. The longitudinal or transverse nature of a mode
will determine its contribution to the VV Raman and Bril-
louin terms or to the HV Raman term, respectively. Further-
more, the study of Saviot and Murray evidences the sensitiv-
ity of the displacement field and the strain tensor to the ratio
of the transverse and longitudinal sound velocities, indicat-
ing that a specific calculation of the Brillouin-Raman spectra,
devoted to a given system, is needed.

V. TORSIONAL VIBRATIONS

So far, we did not consider the torsional vibrations. Their
vibrational modes are described by the displacement field,

e�
tnlm = A�n��r��x	

�rlYlm��,��
�x


− x


�rlYlm��,��
�x	

� ,

�25�

with 	, 
, and � in cyclic order, where � is the radial wave
vector and �n�x�= � 1

x
d
dx

�n� sin x
x

�.23

These are pure torsional modes, which do not produce
dilatation, but only shear, and have no radial displacement.
The displacement at any point is directed at a right angle to
the radius drawn from the center of the sphere. Equation �8�
shows that none of these modes, for any direction of q, can
contribute to the Brillouin term. In fact, for Brillouin scatter-
ing, the relevant displacement is that parallel to q, which has
its typical rotatory symmetry in a plane normal to its direc-
tion. This is in agreement with the general property that a
pure shear vibration, in the absence of density changes, can-
not produce Brillouin scattering by the Brillouin term, but
only the transverse peak at �=qvT by induced �Raman�
terms.

The angular symmetries of the strain components are ob-
tained by taking the derivative of the displacements,

�e�
tnlm

�x�

= A�r�� �rlYlm

�x


�	� −
�rlYlm

�x	

�
��
+ B�r�� �rlYlm��,��

�x


x	x� −
�rlYlm

�x	

x
x��
+ C�r�� �2rlYlm

�x
�x�

x	 −
�2rlYlm

�x	�x�

x
� . �26�

From the point of view of angular symmetry, the l=1 and
l=3 terms would be Raman active even for q=0, but this is
not the case, as can be shown by taking the strain integral of
Eq. �12�.

The displacement of the x component of the l=1 mode is
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ex
tn1x = 0, ey

tn1x = A�1��r�z, ez
tn1x = − A�1��r�y . �27�

The displacements of the other two components can be ob-
tained by cyclic changes of the indices. These rotatory vibra-
tions are pure rotations of concentric spheres around a sym-
metry axis, the x axis for the component of Eq. �27�, by a
�small� quantity proportional to �1��r�. Taking the deriva-
tives of these quantities, the following equations are found
for the nonzero components of the strain tensor:

�yy
tn1x = A��nr��1���nr�

�xy

r
= − �zz

tn1x,

�xy
tn1x = A��nr��1���nr�

�zx

2r
,

�zx
tn1x = − A��nr��1���nr�

�xy

2r
,

�yz
tn1x = A��nr��1���nr�

z2 − y2

2r
. �28�

We can observe that the q=0 strain integrals, ��	
dx, are
all zero, the first three ones because of the odd symmetry of
x, y, and z, the fourth one because the average values of z2

and y2 on the sphere are equal. By similar arguments, it has
been recently shown that also the l=3 mode is not Raman
active at q=0.26 For q�0, assumed along the z axis, we
have to take the strain integral of Eq. �16�. Symmetry con-
siderations on the �	
�x�exp�iqz� quantity show that the
Eyy�q�=Ezz�q�=Exy�q�=Ezx�q�=0. The only nonzero strain
integral is Eyz�q�. It has not a simple analytical form and
needs numerical calculation. It will contribute only to the
depolarized spectrum, but not in the backscattering geom-
etry, which would need a strain integral Exy�q��0 for q
=qẑ. This property is the same that holds for the normal
Brillouin scattering from transverse phonons, and confirms
the close relation between torsional vibrations and transverse
phonons. The arguments used in the previous sections indi-
cate that �tnlm� modes nearly resonant with qvT will have an
important activity and therefore that the relevant n and l
values increase with q.

VI. COMPARISON WITH THE AVAILABLE
EXPERIMENTAL RESULTS

In the Brillouin experiments by Li et al.,20 single particles
and particle aggregates of porous silica were studied. The
particle size was in the range 262�2R�515 nm. Vibra-
tional modes with �n , l�= �1,2� , �1,0� , �2,2� , �1,4� , �1,6�, in
increasing order of frequency, were observed in a range be-
tween about 5 and 20 GHz. For a backscattering experiment
with the 514.5 nm laser line, assuming that the refractive
index is nr�1.4, an exchanged q�0.034 nm−1 can be esti-
mated. The qR values corresponding to 262�2R�515 nm
can be estimated as 4.4�qR�8.7, and for vL�4 km /s, a
resonance frequency of about 14 GHz is obtained. For the
2R=320 and 364 nm spheres, the observed lines are in the

frequency range that the present model indicates. Unfortu-
nately, the �2,0� line, expected to be the dominant one in the
l=0 sequence for qr=5÷6 for both the scattering mecha-
nisms, as shown in Figs. 2 and 5, is not detected. Its fre-
quency is expected at about 21 GHz in the D=364 nm
sample �at �15 GHz in the D=515 nm sample�, just behind
the range of the measurement. Only even l values are ob-
served, whereas in the present model, odd and even l values
should have comparable activities, and the �1,3� and the �1,5�
would be expected to appear.

In the experiments by Cheng et al., particle aggregates of
polystyrene �PS� were studied. The size was in the range
170�2R�860 nm. Vibrational modes �1, l� with 2� l�7
were observed. Higher frequency modes attributed to �2,10�,
�1,11�, �2,13�, �2,17�, �1,19�, �3,21�, and �2,22� were also
observed. No apparent rule seems to be present in the se-
quence of the latter set of modes, but it is possible that the
assignments, based on the fit of the observed frequencies, are
not correct. The most important fact is that the l=0 modes
are not observed. With the sound velocities of PS used in the
fit �vL=2350 m /s and vT=1210 m /s�, the �1,0� mode is ex-
pected at a frequency �GHz� f =2130 /D �nm�, the �2,0�
mode at f =4620 /D, and the �3,0� mode at f =7010 /D. An
intense peak was observed at f =2310 /D �nm�, attributed to
the �1,5� mode and weaker peaks at f =4700 /D �nm� and f
=7450 /D �nm�, attributed to the �1,11� and �1,19� modes,
respectively. Some assignments should be possibly revised,
but the intensities of the Brillouin lines need to be detected
as a function of the particle size. Even if the spectra are
recorded in a 10° scattering angle, all q values up to the
backscattering one �0�q�qBS=4�nr /�0� contribute. In
fact, multiple scattering is severe in these measurements be-
cause PS has a high refractive index �nr=1.59�. Anyway,
even if qR is not well defined, its range increases as the
particle size increases, and new modes appear with higher n
and l. This explains the observed “cutoff” at a frequency �
=qBSvL. In fact, we have seen that only modes nearly reso-
nant with qvL give a strong contribution to BS. All modes
with frequencies 0���qBSvL are resonant with some qvL
value, and this explains the observed plateaux with the cut-
off.

VII. CONCLUSIONS

For spherical nanoparticles much smaller than the wave-
length of the light �qR�1�, the Raman active acoustic vibra-
tions are the l=0 and l=2 spheroidal ones. The physical
mechanism of the photon-phonon interaction depends on the
system and determines the relative activity of the two se-
quences of vibrations. The Raman coupling coefficient, es-
pecially for the l=0 vibrations, is nearly the same for all the
modes of a sequence, with different radial wave vectors.
However, the �n���+1� /��1 /�−2 factor due to the thermal
averaging in harmonic approximation determines a Raman
spectrum with a sequence of peaks of decreasing intensity as
the radial index n increases. For this reason, only the first
mode, n=1, of the l=0 and/or l=2 spheroidal vibrations is
clearly observed in most systems.
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When the size of the particles is comparable to the photon
wavelength, the scenario strongly changes. A different
mechanism of inelastic light scattering appears, i.e. the po-
larizability modulation related to density changes, which is
typical of Brillouin scattering and which is negligible for
small particles. Furthermore, the contribution of the polariz-
ability modulation induced by the relative displacements of
atoms, which produces the Raman scattering in small par-
ticles, strongly changes. For both mechanisms, spheroidal
modes, other than those with l=0 and l=2, become active.
As qR increases, much higher l modes become important. At
the same time, much higher n modes of the sequences be-
come important. In relatively large particles, qR�1, and for
a defined qR value, the active �n , l ,m� spheroidal modes are
those with frequency close to that of the active acoustic
modes in the bulk material, i.e., �nl�qvL, in the case of the
“Brillouin” scattering mechanism, which produces polarized
scattering. The same happens for the “Raman” mechanism,
but it produces also depolarized scattering of modes with
�nl�qvT. The shapes of the spectra are easily predicted in
the two extreme cases of qR�1 and qR�1. The evolution
of the spectra when qR varies in between is not simple. In
fact, the scattered fields by the Brillouin and by the Raman
mechanism have different qR dependences, and they will
sum up with interferences. The relative importance of the
two mechanisms also changes. For qR�1, only the Raman
mechanism is active, whereas for qR�1, the Brillouin
mechanism is expected to be dominant �in the polarized
spectra� because this is the case of ordinary Brillouin scat-
tering in glasses. Torsional modes produce only depolarized
scattering from modes with �nl�qvT.

The analysis assumes that q is well defined in the experi-
ment, having excited the sphere with a plane wave and de-
tected the scattered light at a well defined angle. This is not
simple, from the experimental point of view, when dealing
with spherical scatterers. If the sample is a powder, the
strong elastic scattering produces multiple scattering. Any
polarization information is lost, and light scattered at all q
values, 0�q�4� /�, is collected. Even if the sample is a
single sphere, the polarizations and q are not precisely de-
fined. The collected light will contain light scattered at all q
values that has been reflected at the internal surface of the
sphere. Furthermore, the exciting field is not a plane wave
inside the sphere because of the refraction at different angles
of the incoming plane wave at the sphere surface �a complete
treatment should use the exciting and scattered electric fields
given by the Mie theory�.

Therefore, it would be important to succeed in measuring
samples made by spherical particles embedded in a solid or a
liquid matrix, with matched refractive index, in order to ob-
tain polarized spectra at different well defined q values.

The present results give some indication on the activity of
the acoustic modes of a sphere and should help in assigning
the spectra with better confidence than by fitting only the
observed frequencies.
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